Calcium Ion Flow Permeates Cells through SOCs to Promote Cathode-Directed Galvanotaxis
نویسندگان
چکیده
Sensing and responding to endogenous electrical fields are important abilities for cells engaged in processes such as embryogenesis, regeneration and wound healing. Many types of cultured cells have been induced to migrate directionally within electrical fields in vitro using a process known as galvanotaxis. The underlying mechanism by which cells sense electrical fields is unknown. In this study, we assembled a polydimethylsiloxane (PDMS) galvanotaxis system and found that mouse fibroblasts and human prostate cancer PC3 cells migrated to the cathode. By comparing the effects of a pulsed direct current, a constant direct current and an anion-exchange membrane on the directed migration of mouse fibroblasts, we found that these cells responded to the ionic flow in the electrical fields. Taken together, the observed effects of the calcium content of the medium, the function of the store-operated calcium channels (SOCs) and the intracellular calcium content on galvanotaxis indicated that calcium ionic flow from the anode to the cathode within the culture medium permeated the cells through SOCs at the drift velocity, promoting migration toward the cathode. The RTK-PI3K pathway was involved in this process, but the ROCK and MAPK pathways were not. PC3 cells and mouse fibroblasts utilized the same mechanism of galvanotaxis. Together, these results indicated that the signaling pathway responsible for cathode-directed cellular galvanotaxis involved calcium ionic flow from the anode to the cathode within the culture medium, which permeated the cells through SOCs, causing cytoskeletal reorganization via PI3K signaling.
منابع مشابه
Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent
Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed...
متن کاملElectrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis
BACKGROUND Motile cells exposed to an external direct current electric field will reorient and migrate along the direction of the electric potential in a process known as galvanotaxis. The underlying physical mechanism that allows a cell to sense an electric field is unknown, although several plausible hypotheses have been proposed. In this work we evaluate the validity of each of these mechani...
متن کاملInhibition of anodic galvanotaxis of green paramecia by T-type calcium channel inhibitors.
Calcium ion (Ca2+) is one of the key regulatory elements for ciliary movements in the Paramecium species. It has long been known that members of Paramecium species including green paramecia (Paramecium bursaria) exhibit galvanotaxis which is the directed movement of cells toward the anode by swimming induced in response to an applied voltage. However, our knowledge on the mode of Ca2+ action du...
متن کاملCellular microenvironment modulates the galvanotaxis of brain tumor initiating cells
Galvanotaxis is a complex process that represents the collective outcome of various contributing mechanisms, including asymmetric ion influxes, preferential activation of voltage-gated channels, and electrophoretic redistribution of membrane components. While a large number of studies have focused on various up- and downstream signaling pathways, little is known about how the surrounding microe...
متن کاملMonophasic Pulsed 200-μA Current Promotes Galvanotaxis With Polarization of Actin Filament and Integrin α2β1 in Human Dermal Fibroblasts
OBJECTIVE The monophasic pulsed microcurrent is used to promote wound healing, and galvanotaxis regulation has been reported as one of the active mechanisms in the promotion of tissue repair with monophasic pulsed microcurrent. However, the optimum monophasic pulsed microcurrent parameters and intracellular changes caused by the monophasic pulsed microcurrent have not been elucidated in human d...
متن کامل